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Introduction
Why are we interested in geophysical flows?

water management (quality, availability)
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Introduction
Why are we interested in geophysical flows?

forecast natural disasters, mitigate their consequences

Malpasset 1959

Saint Martin Vésubie 2020
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Introduction
Why are we interested in geophysical flows?

understand interplay between ocean dynamics and

→ the weather;

→ climate change;

→ the reshaping of the coastline (erosion);

→ natural resources (marine energy, seafood);
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Introduction
A "simple" nonlinear model: the Shallow Water system

We need a model to understand complex flow dynamics

Starting point: free surface Navier-Stokes equations

Several difficulties (discretization process):

Conservativity and positivity of the water height;

Keeping track of the free surface (wave rolls);

Evolving wet/dry transitions (shore line);

Discontinuous solutions (hydraulic jump, shock waves);
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Introduction
A "simple" nonlinear model: the Shallow Water system

Reduce complexity through approximations

Assumptions:

shallowness (characteristic depth� domain length);

horizontal velocity well approximated by its vertical average;

hydrostatic pressure (Pbottom = Patm + g × water column weight);

We get the Shallow Water system

Gerbeau and Perthame 2000 “Derivation of Viscous Saint-Venant System for Laminar

Shallow Water; Numerical Validation”

Marche 2007 “Derivation of a new two-dimensional viscous shallow water model with

varying topography, bottom friction and capillary effects”
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Introduction
A "simple" nonlinear model: the Shallow Water system

Quantities of interest:

water height h(t , x, y) ∈ R+;

horizontal discharge Q(t , x, y) = (q, r)(t , x, y) ∈ R2;

horizontal velocity V = (u, v) = Q/h ∈ R2;

bathymetry z(x, y) ∈ R;

Free surface

Rigid bottom

h(t, x, y)
V (t, x, y)

ζref

ζ(t, x, y)

z(x, y)
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Introduction
A "simple" nonlinear model: the Shallow Water system

The 2D shallow water system reads:
∂h
∂t

+ ∇ · (hV) = 0

∂

∂t
(hV) + ∇ · (hV ⊗ V) + ∇

(g
2

h2
)

= −gh∇z
(SW)

Free surface

Rigid bottom

h(t, x, y)
V (t, x, y)

ζref

ζ(t, x, y)

z(x, y)
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The low Froude regime
Dimensionless form

Define the local Froude number Fr def=
|V |√
gh

=
particles velocity

acoustic waves velocity

We are interested in the regime Fr � 1 (multi-scale in time)

This regime is relevant:

in coastal flows, Fr ≈ 10−2;

in river flows and lakes, Fr ≈ 10−1;

What are the dominant terms in (SW) when Fr � 1?
How do solutions behave?

→ Need to rewrite (SW) in dimensionless form

Mathieu Rigal A low Froude accurate scheme 8 / 36



The low Froude regime
Dimensionless form

Consider the following rescaling:

x̃ =
x
`∗
, ỹ =

y
`∗
, h̃ =

h
h∗
, z̃ =

z
h∗
, Ṽ =

V
v∗
, Q̃ =

Q
h∗v∗

, t̃ =
`∗

v∗
t

System (SW) becomes:
∂h̃
∂t̃

+ ∇(x̃,ỹ) · (h̃Ṽ ) = 0

∂

∂t̃
(h̃Ṽ ) + ∇(x̃,ỹ) · (h̃Ṽ ⊗ Ṽ ) +

1

Fr2
∇(x̃,ỹ)

( h̃2

2

)
= −

h̃

Fr2
∇(x̃,ỹ)z̃

(PFr)

with the characteristic Froude number

Fr def= v∗/
√

gh∗
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The low Froude regime
Limiting system (P0)

Let
(

h
hV

)
be a solution of (PFr), assume it admits the asymptotic expansion:

h(t , x, y; Fr) = h(0)(t , x, y) + Fr h(1)(t , x, y) + Fr2 h(2)(t , x, y) + O(Fr3)

V(t , x, y; Fr) = V(0)(t , x, y) + Fr V(1)(t , x, y) + Fr2 V(2)(t , x, y) + O(Fr3)
(1)

Plug it into (PFr) and isolate terms with same Froude powers
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The low Froude regime
Limiting system (P0)

Consider the momentum equation

∂

∂t
(hV) + ∇ · (hV ⊗ V) +

1

Fr2
∇

(h2

2

)
= −

h

Fr2
∇z

Extracting terms in Fr−2 and Fr−1 yields:

1

Fr2
∇

(h2
(0)

2

)
= −

h(0)

Fr2
∇z ⇒ h(0)∇(h(0) + z) = 0

1
Fr
∇

(
h(0)h(1) + h(1)h(0)

2

)
= −

h(1)

Fr
∇z ⇒ h(0)∇h(1) = 0
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The low Froude regime
Limiting system (P0)

Consider the mass equation

∂h
∂t

+ ∇ · (hV) = 0

Check terms in Fr0 and use ∇(h(0) + z) = 0⇒ ∂t (h(0) + z) = ∂th(0) = φ(t)

∂h(0)

∂t
= −∇ · (h(0)V(0)) ⇒ |Ω|

∂h(0)

∂t
= −

∫
∂Ω

h(0)V(0) · n|n∂Ω dσ

For periodic limit conditions, the integral cancels:

Ω = T2 ⇒
∂h(0)

∂t
= 0 ⇒ ∇ · (h(0)V(0)) = 0
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The low Froude regime
Limiting system (P0)

Back to the momentum equation

∂

∂t
(hV) + ∇ · (hV ⊗ V) +

1

Fr2
∇

(h2

2

)
= −

h

Fr2
z

Terms in Fr0 lead to:

∂

∂t
(h(0)V(0)) + ∇ · (h(0)V(0) ⊗ V(0)) + ∇

(
h(0)h(2) + h2

(1)/2
)

= −h(2)∇z

⇒
∂

∂t
V(0) + (V(0) · ∇)V(0) + ∇h(2) = 0
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The low Froude regime
Limiting system (P0)

Define the space

W
def= {(h,V) : T2 → R3, ∇(h + z) = 0, ∇ · (hV) = 0} (2)

Formally, the limiting system will write:
∀t ≥ 0, (h(t , ·),V(t , ·)) ∈W

∂

∂t
V + (V · ∇)V + ∇Π = 0

(P0)

Remark 1 (Incompressible-like space)
When ∇z = 0, seeing h as a density the spaceW becomes that of
incompressible states (analogy with the Euler eq.).

Remark 2 (Well prepared data)
Condition ∇h(1) = 0 doesn’t appear in (P0) but is important for 0 < Fr � 1.
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The low Froude regime
Limiting system (P0)

Definition 1 (Well prepared data)
We will consider the well prepared space defined as

Wp
def=

{∑
k∈N

Frk
(
h(k )

V(k )

)
: T2 → R3,

(
h(0)

V(0)

)
∈W, ∇h(1) = 0

}
(3)

In the setting of a flat bathymetry (∇z = 0) and restricting to initial
conditions belonging toWp , expansion (1) exists over some time
interval [0,T], T > 0;

The limiting system of (PFr) has been rigorously shown to be (P0)
under the previous assumptions;

Klainerman and Majda 1982 “Compressible and Incompressible Fluids”
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The low Froude regime
Limiting system (P0)

Important for a method to have the correct asymptotic behavior

→ Consistency and stability should be uniform in Fr

Definition 2 (Asymptotic preserving)
P∆t ,Fr is asymptotically consistent with (PFr) if, for all initial data, the limit
scheme P∆t ,0 results in a consistent discretization of (P0). Moreover, it is
asymptotically stable if the stability constraint on ∆t is Fr-independent. If
both are satisfied, P∆t ,Fr is said asymptotic preserving.

P∆t,Fr

PFr

P∆t,0

P0

∆t → 0

Fr → 0

Fr → 0

∆t → 0
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A first IMEX scheme
Why are explicit schemes bad?

Recall: (PFr) is a system of hyperbolic conservation and balance laws

∂U
∂t

+ ∇ · F(U) = S(U, z)

U =
(

h
hV

)
, F(U) =

(
hVT

hV ⊗ V + h2I2/(2Fr2)

)
3×2
, S(U, z) =

(
0

− h
Fr2∇z

)
Let n ∈ S2, the Jacobian DF(U; n) admits the following eigenvalues:

λj(U; n) = (V · n) + j

√
h

Fr
, j ∈ {−1, 0, 1}

Problem: explicit methods require prohibitively small time steps

∆t ≤
Fr
2

min
( ∆x

Fr |V · n| +
√

h

)
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A first IMEX scheme
Why are explicit schemes bad?

Other issues related to explicit methods:

they are generally not asymptotically consistent;

they make it hard to preserve lakes at rest (K − z, 0)

V = 0, ∇

(h2

2

)
= −h∇z

In standard finite volumes schemes, the pressure is upwinded

→ some kind of upwinding has to be enforced on the source term

Audusse et al. 2004 “A fast and stable well-balanced scheme with hydrostatic

reconstruction for shallow water flows.”
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A first IMEX scheme
Wave splitting and discretization

Implicit time integration overcomes those issues...
... but it is too costly to solve nonlinear systems

Instead: try to split the system in two spatial operators:

∇ · F(U) − S(U, z) = H(U, z) + L(U, z)

H(U, z) represents the convection (slow dynamics)

its eigenvalues must remain bounded as Fr→ 0;

it can be nonlinear;

L(U, z) represents the acoustic waves (fast dynamics)

its eigenvalues can be unbounded as Fr→ 0;

it must be linear;
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A first IMEX scheme
Wave splitting and discretization

Consider (PFr) in quasi-linear form

∂U
∂t

+


0 1 0

h/Fr2 − u2 2u 0
−uv v u

 ∂U∂x +


0 0 1
−uv v u

h/Fr2 − v2 0 2v

 ∂U∂y =
(

0
− h

Fr2∇z

)

Chose L s.t. ∂tU + L(U, z) = 0 is the linearization of (PFr) around
(
−z
0

)
:

∂U
∂t

+


0 1 0

−z/Fr2 0 0
0 0 0

 ∂U∂x +


0 0 1
0 0 0

−z/Fr2 0 0

 ∂U∂y =
(

0
− h

Fr2∇z

)

⇒ L(U, z) =
(
∇ · (hV)

− z
Fr2 ∇(h + z)

)
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A first IMEX scheme
Wave splitting and discretization

This choice of L implies

H(U, z) = ∇ · F(U) − S(U, z) − L(U, z) =
(

0
∇ · (hV ⊗ V) + 1

2Fr2∇(h + z)2

)

Eigenvalues of H along direction n ∈ S2 are 0, (V · n) and 2(V · n);

Eigenvalues of L are 0 and ±
√
−z/Fr;

Time integration will take advantage of the wave splitting

∂U
∂t

+ H(U, z) = 0 → explicit discretization

∂U
∂t

+ L(U, z) = 0 → implicit discretization
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A first IMEX scheme
Wave splitting and discretization

Project U onto cartesian mesh (Cij)Nx×Ny : Uij
def=

1
|Cij |

"
Cij

U dxdy

Convection: standard Rusanov flux

H(UL ,UR , zL , zR ; n) =
1
2

(H(UL , zL ; n) + H(UR , zR ; n) − |a |(UR − UL )) (4)

→ Second order achieved with MUSCL reconstruction + minmod limiter

Acoustic waves: use centered differences

Lij(U, z) =



(hV)i+1,j − (hV)i−1,j

2∆x
+

(hV)i,j+1 − (hV)i,j−1

2∆y

−
zij

Fr2

(h + z)i+1,j − (h + z)i−1,j

2∆x

−
zij

Fr2

(h + z)i,j+1 − (h + z)i,j−1

2∆y


(5)
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A first IMEX scheme
Wave splitting and discretization

Time discretization: Implicit-Explicit Runge-Kutta

c̃1 0

c̃2 ã21 0
...

...
...
. . .

c̃s ãs1 ãs2 · · · 0

b̃1 b̃2 · · · b̃s

c1 a11

c2 a21 a22
...

...
...
. . .

cs as1 as2 · · · ass

b1 b2 · · · bs

U(j) − Un

∆t
+

j−1∑
k=1

ãjk H(U(k ), z) +
j∑

k=1

ajk L(U(k ), z) = 0 ∀1 ≤ j ≤ s

Un+1 − Un

∆t
+

s∑
k=1

b̃k H(U(k ), z) +
s∑

k=1

bk L(U(k ), z) = 0
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A first IMEX scheme
Wave splitting and discretization

Define scheme P1
∆t ,Fr by combining (4), (5) and the Butcher tableaux:

0 0

γ γ 0

1 δ 1 − δ 0

δ 1 − δ 0

0 0

γ 0 γ

1 0 1 − γ γ

0 1 − γ γ

γ = 1 −
√

2/2

δ = 1 − 1/(2γ)

Proposition 1

Scheme P1
∆t ,Fr is consistent at second order with (PFr) and is conservative

on the water height. It is shown to preserve lakes at rest and to be
asymptotically consistent. Furthermore, setting Hij ≡ 0, its modified
equation is unconditionally L2-stable.
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A first IMEX scheme
Wave splitting and discretization

Solution at time t = Fr/6 with Fr = 10−1 (above: reference, below: P1
∆t ,Fr)
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A first IMEX scheme
Wave splitting and discretization

Solution at time t = Fr/6 with Fr = 10−1 (above: reference, below: P1
∆t ,Fr)
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A first IMEX scheme
Wave splitting and discretization

Gresho vortex (steady state) at time t = 1/2 with Fr = 10−2
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A first IMEX scheme
Wave splitting and discretization

Gresho vortex (steady state) at time t = 1/2 with Fr = 10−2
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Invariance of nearly-incompressible states
State of the art

Recall that Wp =
{∑

k∈N

Frk
(
h(k )

V(k )

)
: T2 → R3,

(
h(0)

V(0)

)
∈W, ∇h(1) = 0

}
Question: Do we have U(t = 0, · ; ·) ∈Wp ⇒ U(t > 0, · ; Fr) close toW?

Restrict to z ≡ Cst, and introduce the L2 spaces:

E
def=

{ (
h
V

)
∈ (L2(T2))3, ∇h = 0, ∇ · V = 0

}
= (L2(T2))3 ∩W

E⊥
def=

{ (
h
V

)
∈ (L2(T2))3,

"
T2

h dxdy = 0, ∃φ ∈ H1(T2), V = ∇φ
}

Hodge decomposition: (L2(T2))3 = E ⊕ E⊥ with E ⊥ E⊥

⇒ ∀U ∈ (L2(T2))3, ∃!Û ∈ E, U − Û ∈ E⊥ → define PEU = Û
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Preserving nearly-incompressible states
State of the art

Rewrite (PFr) in (h,V) coordinates as ∂tU +K (U) + G(U) = 0 with:

U = (h,V)T , K (U) = (V · ∇)U, G(U) = (h∇ · V , Fr−2∇h)T

Theorem 1 (Schochet, 1994)

Let U and U∗ be respective solutions of ∂tU +K (U) + G(U) = 0

U(t = 0, ·) = U0(·)
(6)

 ∂tU∗ + PEK (U∗) = 0

U∗(t = 0, ·) = PEU0(·)
(7)

Then U∗(t ≥ 0, ·) ∈ E, and ‖h − ĥ‖L2(t = 0) = O(Fr2)

‖V − V̂‖L2(t = 0) = O(Fr)
⇒

 ‖h − h∗‖L2(t > 0) = O(Fr2)

‖V − V∗‖L2(t > 0) = O(Fr)
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Preserving nearly-incompressible states
State of the art

Lin. K ,G around (−z,V∗): KU = (V∗ · ∇)U, GU = (−z∇ · V , Fr−2∇h)T

Define EE(t) = Fr−2‖̂h‖2
L2 − z‖V̂‖2

L2 , EE⊥(t) = Fr−2‖h − ĥ‖2
L2 − z‖V − V̂‖2

L2

Theorem 2 (Dellacherie)

Let U and U∗ be respective solutions of ∂tU + KU + GU = 0

U(t = 0, ·) = U0(·)

 ∂tU∗ + KU∗ = 0

U∗(t = 0, ·) = PEU0(·)

Then PEU = U∗, and E′
E

= E′
E⊥

= 0. As a consequence ‖h − ĥ‖L2(t = 0) = O(Fr2)

‖V − V̂‖L2(t = 0) = O(Fr)
⇒

 ‖h − h∗‖L2(t > 0) = O(Fr2)

‖V − V∗‖L2(t > 0) = O(Fr)

Mathieu Rigal A low Froude accurate scheme 29 / 36



Preserving nearly-incompressible states
State of the art

Theorem 3 (Dellacherie)

Let F be a lin. differential operator, and let U and U∗ be resp. solutions of ∂tU + FU = 0

U(t = 0, ·) = U0(·)

 ∂tU∗ + FU∗ = 0

U∗(t = 0, ·) = PEU0(·)

The following holds:
1 ‖U0 − PEU0‖L2 = O(Fr)⇒ ‖U − U∗‖L2(t ≥ 0) = O(Fr). Since E is not

invariant, in general U∗ < E and thus U∗ , PEU.
2 Assume F is such that (∂t + F )U = 0 leaves E invariant. Then we can

substitute U∗ with PEU in the point above.

→ In the linear case, E-invariance is sufficient to preserve nearly
incompressible states
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Preserving nearly-incompressible states
Low Froude accuracy

Definition 3 (Modified PDE)

The pth order modified PDE associated to a scheme is an equation whose
solutions are approximated by that scheme up to O(∆tp+2) terms.

Definition 4 (Low Froude accuracy)

Let H +L be a wave splitting for (PFr), such that H has bounded
eigenvalues when Fr→ 0. A numerical scheme is low Froude accurate
(LFA) for the splitting (H , L) if it admits an E-invariant modified PDE when
applied to the linearized acoustic wave equation with flat bathymetry:

∂tU +Llinearized(U) = 0 .

Arun and Samantaray 2020 “Asymptotic Preserving Low Mach Number Accurate IMEX

Finite Volume Schemes for the Isentropic Euler Equations”
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Preserving nearly-incompressible states
Low Froude accuracy

Proposition 2

Scheme P1
∆t ,Fr is not low Froude accurate.

Proof. Write the modified PDE associated to P1
∆t ,Fr when Hij = 0, ∇z = 0:

(∂t + L)U = [R∆t − R∆x ]U (8)

Leading error induced by s-stages RK method (A, b) of order p:

R∆t = ∆tp
(
bT Ap1s −

1
(p + 1)!

)
(−L)p+1 → for P1

∆t ,Fr, s = 3, p = 2

Leading error induced by spatial centered differences of order p:

R∆x = νp(∆xpLnx∂
p+1
x + ∆ypLny∂

p+1
y ) with Ln = DF((−z, 0)T ; n)

We haveW = ker L ⊂ ker R∆t , butW 1 ker R∆x �
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Preserving nearly-incompressible states
Low Froude accuracy

We would like to replace the error operator R∆x with

R̃∆x = νp(∆xp∂
p
x + ∆yp∂

p
y )L ⇒ W ⊂ ker R̃∆x

We will need to discretized operator (R̃∆x − R∆x ):

R̃∆x − R∆x = νp
(
∆ypLnx

∂p+1

∂yp∂x
+ ∆xpLny

∂p+1

∂xp∂y

) (
· +

[
z
0

] )
(9)

For p = 2, define W = U + (z, 0)T and Rij a centered discretization of (9):

Rij(U) =
ν2
2

(Lnx

∆x

[
W·,j+1 − 2W·,j + W·,j−1

]i+1

i−1
+

Lny

∆y

[
Wi+1,· − 2Wi,· + Wi−1,·

]j+1

j−1

)
Proposition 3

Define P2
∆t ,Fr by substituting Lij with Lij + Rij in P1

∆t ,Fr. This new scheme
inherits from all the good properties of P1

∆t ,Fr, in addition of being LFA.
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A first IMEX scheme
Wave splitting and discretization

Solution at time t = Fr/6 with Fr = 10−1 (above: reference, below: P2
∆t ,Fr)
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A first IMEX scheme
Wave splitting and discretization

Gresho vortex (steady state) at time t = 1/2 with Fr = 10−2
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Perspectives

Conclusion: accuracy at Fr � 1 requires linear E-invariance

second order modified scheme shows great improvement;

procedure can be extended to higher order;

Limitations:

high complexity due to system inversion;

oscillations can appear in non smooth regions (MOOD procedure?);

lack of positivity;

Ongoing work: implicit upwind kinetic scheme

positivity and discrete entropy inequality;

linear system can be inverted manually...

... but O(N2) complexity;
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Appendix
The classical Finite Volumes method

Finite Volumes well suited for hyperbolic systems of conservation laws:

∂U
∂t

+ ∇ · F(U) = 0, U ∈ Rp , F(U) ∈ Rp×d (10)

Integrate over control volume [0, δt ] × Ω with Ω ⊂ Rd :"
Ω

U(δt , x, y) − U(0, x, y) dxdy = −
∫
∂Ω

∫ δt

0
F(U(τ, x, y))n|∂Ω dτdσ

⇒
〈U〉Ω(δt) − 〈U〉Ω(0)

δt
= −

1
|Ω|

∫
∂Ω
〈F(U; n|∂Ω)〉[0,δt ](x, y) dσ (11)

→ Need to approximate the flux at the boundary
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Appendix
The classical Finite Volumes method

Consider piecewise-constant data and project along the normal

nΩL

ΩR

UL
UR ⇒

We get the 1D Riemann problem:{
∂tW + ∂sF(W; n) = 0
W0 = 1s≤0UL + 1s>0UR

Self-similar solution Ŵ : (t , s) 7→ Ŵ(s/t ; UL ,UR )

s = 0ΩL ΩR

0

t

s

δt

S1 S2 R3

UL UR
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Appendix
The classical Finite Volumes method

Hence we have 〈F(U; n)〉[0,δt ] ≈ F(Ŵ(0; UL ,UR ); n)

Expensive to determine Ŵ → use approximate Riemann solvers

Example: Rusanov flux

FRus(UL ,UR ) =
1
2

(F(UL ) + F(UR ) − |a |(UR − UL ))

Stability: no crossing wave (avoid collisions)
⇒ CFL condition on the time step

∆t ≤
∆x
2|a |
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Appendix
The classical Finite Volumes method

Second order accuracy: piecwise linear reconstruction

Edge K with neighboring cells K |L and K |R;

Edge normal nK ∝ center(K |R) − center(K |L);

Reconstruction: MUSCL + minmod limiter:

∇̃ijU =
(Ui+1,j − Ui−1,j

2∆x
,
Ui,j+1 − Ui,j−1

2∆y

)
, δK U =

UK |R − UK |L

dist(K |L ,K |R)

UK− = UK |L + dist(K |L ,K) ×minmod(∇̃K |L U · nK , δK U)

UK+ = UK |R − dist(K ,K |R) ×minmod(∇̃K |RU · nK , δK U)

where minmod(a, b) =
1
2

(sign(a) + sign(b)) min(|a |, |b |)
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