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Introduction

Why are we interested in geophysical flows?

@ water management (quality, availability)
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Introduction

Why are we interested in geophysical flows?

o forecast natural disasters, mitigate their consequences
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Introduction

Why are we interested in geophysical flows?

@ understand interplay between ocean dynamics and
— the weather;
— climate change;
— the reshaping of the coastline (erosion);
N

natural resources (marine energy, seafood);

7 : z f—*».
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Introduction

A "simple" nonlinear model: the Shallow Water system

We need a model to understand complex flow dynamics
Starting point: free surface Navier-Stokes equations

Several difficulties (discretization process):
@ Conservativity and positivity of the water height;
@ Keeping track of the free surface (wave rolls);
@ Evolving wet/dry transitions (shore line);
@ Discontinuous solutions (hydraulic jump, shock waves);
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Introduction

A "simple" nonlinear model: the Shallow Water system
Reduce complexity through approximations

Assumptions:
@ shallowness (characteristic depth << domain length);
@ horizontal velocity well approximated by its vertical average;
@ hydrostatic pressure (Pypottom = Patm + g X Water column weight);

We get the Shallow Water system

Gerbeau and Perthame 2000 “Derivation of Viscous Saint-Venant System for Laminar
Shallow Water; Numerical Validation”

Marche 2007 “Derivation of a new two-dimensional viscous shallow water model with
varying topography, bottom friction and capillary effects”
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Introduction

A "simple" nonlinear model: the Shallow Water system

Quantities of interest:
@ water height h(t, x, y) € R,;
@ horizontal discharge Q(t, x, y) = (g, r)(t, x, y) € R?;
@ horizontal velocity V = (u,v) = Q/h € R?;
@ bathymetry z(x, y) € R;

Cref

Z(w,y)‘ h(t,x,y)

Rigid bottom
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Introduction

A "simple" nonlinear model: the Shallow Water system

The 2D shallow water system reads:

oh
— +V-(hV) =
5 TV (V) =0

O hV)+ V- (hVe V)4 V(th) — —ghVz

at 2

Cref

Rigid bottom
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The low Froude regime

Dimensionless form

_ w VI particles velocity
Define the local Froude number Fr = = . .
\Jgh acoustic waves velocity

We are interested in the regime Fr <« 1 (multi-scale in time)

This regime is relevant:
@ in coastal flows, Fr ~ 1072;
@ in river flows and lakes, Fr ~ 107 1;

What are the dominant terms in (SW) when Fr <« 1?
How do solutions behave?

— Need to rewrite (SW) in dimensionless form
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The low Froude regime
Dimensionless form

Consider the following rescaling:

. X _ 'y - h .z ~= V = Q .
== =L =— =—, V=—, Q= , f=—t

= YT e h P YT v Q h*v* v*
System (SW) becomes:

oh o=

ot

o 1 h2 E (PFr)
SOV 4V (FVe V) + 5V )= 25V

with the characteristic Froude number

Fr & v*/\/ﬁ

9/36
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The low Froude regime

Limiting system (%)
h . . . . .
Let hV be a solution of (Pg), assume it admits the asymptotic expansion:

h(t, x, y; Fr) = hy(t, x, y) + Fr gy (t, x, y) + Fr? h)(t, x, y) + O(Fr®)
V(t, x, y; Fr) = Vig)(t, X, ¥) + Fr Viay(t, X, y) + Fr? Vi) (t, x, y) + O(Fr®)

Plug it into (Pgr) and isolate terms with same Froude powers
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The low Froude regime

Limiting system (P)

Consider the momentum equation

2
S V) +V-(hVe V) + lv(h—) v

ot Fre \ 2 Fr
Extracting terms in Fr~2 and Fr™' yields:
2
1 (Mo ho
ﬁv(g) - —#Vz = hoV(ho +2) =0

1 o( hoyha) + hayho) he)
— -y hoyVhiyy = 0
Frv( 2 Fr Z = Novha
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The low Froude regime

Limiting system (P)

Consider the mass equation

oh
v (hV) =0
ot V()

Check terms in Fr® and use V(h(g) + 2) = 0 = d(h() + 2) = dtho) = ¢(t)
=t =V hoVe) = 1Q—= == | hoVi) Mg do
t ot 90
For periodic limit conditions, the integral cancels:

Q=T = m:O = V-(hoV)=0
= ot (0) V(0)
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The low Froude regime

Limiting system (P)

Back to the momentum equation
o 1 _(h? h
2 hv)+V-(hVeV —V(—) LY
StV + V- (Vo V) + V(5 )= -5
Terms in Fr° lead to:

p
~(h0)Vi0) + V- (o Vo) @ Vio) + V(h(o) hiey + 2, /2) - —hVz

8

= o Vo) + (Vo) - V) V(o) + Vhiz) = 0
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The low Froude regime

Limiting system (P)

Define the space
W £ {(h,V):T? > R® V(h+2)=0, V-(hV) =0} (2)
Formally, the limiting system will write:
VYt >0, (h(t,"), V(t,")) e W

0 (o)

Remark 1 (Incompressible-like space)

When Vz = 0, seeing h as a density the space W becomes that of
incompressible states (analogy with the Euler eq.).

Remark 2 (Well prepared data)
Condition Vh() = 0 doesn’t appear in (Po) but is important for 0 < Fr < 1.

Mathieu Rigal A low Froude accurate scheme 14/36



The low Froude regime
Limiting system (P)

Definition 1 (Well prepared data)
We will consider the well prepared space defined as

h h
def k[ Nk)) . 2 3 (0) _
W, £ {Z Fr (V(k)) -T2 5 R3, (V«))) €W, Vhy) = o} (3)

keN

@ In the setting of a flat bathymetry (Vz = 0) and restricting to initial
conditions belonging to Wy, expansion (1) exists over some time
interval [0, T], T > 0;

@ The limiting system of (Pr;) has been rigorously shown to be (Po)
under the previous assumptions;

Klainerman and Majda 1982 “Compressible and Incompressible Fluids”
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The low Froude regime

Limiting system (P)

Important for a method to have the correct asymptotic behavior
— Consistency and stability should be uniform in Fr

Definition 2 (Asymptotic preserving)

Pat.rr is asymptotically consistent with (Pr) if, for all initial data, the limit
scheme P results in a consistent discretization of (Pp). Moreover, it is
asymptotically stable if the stability constraint on At is Fr-independent. If
both are satisfied, Pt r is said asymptotic preserving.

Fr—0
P —— 22 P,

At —0 At —0

Pat,Fr Pat,o

Fr—0
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A first IMEX scheme
Why are explicit schemes bad?

Recall: (Pr) is a system of hyperbolic conservation and balance laws

%’ +V-F(U) = S(U,2)

h hvT 0
V= (hv)’ A= (hV® V+ h2I2/(2Fr2))3X2 - SU.2)= (_#VZ)

Let n € S?, the Jacobian DF(U; n) admits the following eigenvalues:

A4Usn)=(V-n)+j je{-1,0,1}

Fr-

Problem: explicit methods require prohibitively small time steps

At<Frmin( Ax )
-2 FriV-nl+ vh
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A first IMEX scheme

Why are explicit schemes bad?

Other issues related to explicit methods:
@ they are generally not asymptotically consistent;
@ they make it hard to preserve lakes at rest (K — z,0)
2

h
V=o, V(—) - _hV
0 5 z

In standard finite volumes schemes, the pressure is upwinded
— some kind of upwinding has to be enforced on the source term

Audusse et al. 2004 “A fast and stable well-balanced scheme with hydrostatic
reconstruction for shallow water flows.”
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A first IMEX scheme

Wave splitting and discretization

Implicit time integration overcomes those issues...
... but it is too costly to solve nonlinear systems

Instead: try to split the system in two spatial operators:
V-FWU)-S8(U,z)=H(U,2) + L(U, z)

H(U, z) represents the convection (slow dynamics)
@ its eigenvalues must remain bounded as Fr — 0;
@ it can be nonlinear;

L(U, z) represents the acoustic waves (fast dynamics)
@ its eigenvalues can be unbounded as Fr — 0;
@ it must be linear;
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A first IMEX scheme
Wave splitting and discretization

Consider (Pg) in quasi-linear form

U O 1 Oy L P IV R
E+ h/Fre —us 2u 08_+ —uv v u vl B 8
—uv v ou) % \hFe-v? 0 2v) Y Fr?

Chose L s.t. 9;U + L(U, z) = 0 is the linearization of ($) around (—Oz):

ou [0, V% (0 9 ey (oo
E+—Z/Fr 0 06_+ 0 0 0|— = —LVZ
o 00 lzF? 0 o/ VF

V- (hV)
=L{U.2)= (—é V(h+ z))
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A first IMEX scheme
Wave splitting and discretization

This choice of L implies

0
H(U,z) =V - F(U) - S(U,2) - L(U, 2) = ( (Ve V)+ (h+z))

@ Eigenvalues of H along direction n € S? are 0, (V - n) and 2(V - n);
@ Eigenvalues of L are 0 and + v—z/Fr;

Time integration will take advantage of the wave splitting

ou

o1 +H(U,z) =0 — explicit discretization
ou D N
T +L(U,z) =0 — implicit discretization
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A first IMEX scheme
Wave splitting and discretization

def 1

= — Udxd
Cil Mo~ Y

Project U onto cartesian mesh (C,-,-)NxxNy: Ui

Convection: standard Rusanov flux
1
H(UL,Ur,zL,zr;n) = E(H(UL,ZL ;M +H(Ur, zr;n) —lal(Ur — UL)) (4)
— Second order achieved with MUSCL reconstruction + minmod limiter

Acoustic waves: use centered differences

(hV)is1,j = (hV)iq .\ (hV)ijs1 = (V)
2Ax 2Ay

L,’j(U, 2) = _% (h+ z)l+1,j2A)£h + 2)1—1,1 (5)

Zj (h+2)ijs1 — (h+ 2)j-1

Fr2 27y
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A first IMEX scheme

Wave splitting and discretization

Time discretization: Implicit-Explicit Runge-Kutta

C~21 0 Ci | a1
Colay O Co | @ ax
Cs |81 &2 - 0 Cs | @s1 Aas2 ass
Ui —yn & ,
+ ) aHUR, 2)+ Y agl(UY,2)=0  Vi<j<s

Mathieu Rigal A low Froude accurate scheme
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A first IMEX scheme

Wave splitting and discretization

Define scheme P} . . by combining (4), (5) and the Butcher tableaux:

At,Fr
00 0|0
vy 0 v!|0 0% 7’=1—\/§/2
116 1-0 0 110 1-y vy §=1-1/(2y)
6 1-6 0 0 1-y vy

Proposition 1

Scheme P, . is consistent at second order with (Pr;) and is conservative
on the water height. It is shown to preserve lakes at rest and to be
asymptotically consistent. Furthermore, setting H;; = 0, its modified

equation is unconditionally L?-stable.
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A first IMEX scheme

Wave splitting and discretization

Solution at time t = Fr/6 with Fr = 10~" (above: reference, below: SDN )

P - L | ‘
. » f e
2.41e-03 8.00e-02 3.00e+00
| | |
' . ‘ 8.00e-04 5.33e-02 1.66e+00
. . -8.12e-04 2.67e-02 . ' ' 3.32e-01
. ‘ ‘ I72.42e703 ‘ Is.meres | 00e+00
Free surface Local Froude number X-discharge
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A first IMEX scheme

Wave splitting and discretization

Solution at time t = Fr/6 with Fr = 10~

| - L |
I24\e 03
' . ‘ 8.00e-04

Free surface

-8.12e-04

-2.42¢-03

4.15e-03

' i2se0s
[ T

- -1.656-03
| L

— ' I,4_54e,03

Free surface

Mathieu Rigal

r\

8.00e-02

5.33e-02

2.67e-02

‘ Is.meros

Local Froude number

N

8.21e-02

5.49-02

2.77e-02

‘ I4.4sero4

Local Froude number

A low Froude accurate scheme

(above: reference, below: P!

At, Fr)
. ' ' 3.00e+00
|
1.66e+00
' ‘ . 3.32e-01
| 00e+00
X-discharge
' . ‘ 3.09e+00
|
1.71e+00
' . ‘ 3.28e-01
| 05e+00
X-discharge
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A first IMEX scheme

Wave splitting and discretization

Gresho vortex (steady state) at time t = 1/2 with Fr = 1072

7.73e-05 2.39€+00

5.16-05 4.10e-03

7.97e-01

6.15¢-03 -
2.60e-05 2.05e-03 - 7.97e-01

I:wse-o? Iuvuoe»,uo I-szse‘ou

Free surface Local Froude number X-discharge
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A first IMEX scheme

Wave splitting and discretization

Gresho vortex (steady state) at time t = 1/2 with Fr = 1072

7.73e-05 .G.I 5e-03 - I2.3se;oo
5.16-05 4.10e-03 7.97e-01
2.60e-05 2.05e-03 ' 7.97e-01

Iause-o? Iuvuoe»,uo I-asse‘ou

Free surface Local Froude number X-discharge

= .l
a [ ' 1.08e-01 l|.419702 .!'-.' l5.23e+00
i LI} r
i 1 4.08e-02 2 9.3%¢-03 A 1.74€400
h il
ey = E S
-2.67e-02 X 4.69e-03 -1.74e+00
I79.439702 I8.309707 I—s.zsefoo
Free surface Local Froude number X-discharge
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Invariance of nearly-incompressible states
State of the art

Recall that W, = {Z Frk (h(k)) : T2 — R®, (h(o)) €W, Vhy = 0}
= Wk Vio)

Question: Do we have U(t =0,-;-) € W, = U(t > 0, -; Fr) close to W?

Restrict to z = Cst, and introduce the L2 spaces:

&< {(C) € (L3(T?)%, Vh=0,V-V = 0} = (LAT?)° nW

et & {(C) € (L3(T?))3, fsz hdxdy =0, 3¢ € H'(T?), V = V¢}

Hodge decomposition: (L?(T?))® =&@ &' with & L &*
=S VYU e (L3T?)%, AUes U-Ue&t — define PsU=U
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Preserving nearly-incompressible states
State of the art

Rewrite (Pg) in (h, V) coordinates as ;U + K(U) + G(U) = 0 with:
U=hWT, KU =V -V)U, GU)=hV-V,Fr2vhT

Theorem 1 (Schochet, 1994)

Let U and U* be respective solutions of

U+ K(U)+G(U) =0 6 AU + PsK(U*) =0
Ut =0, = U © Ut(t =0,-) = PsU°()

Then U*(t > 0,-) € &, and

lIh =iz (t = 0) = O(Fr?) _ [ 1h=hlia(t > 0) = O(F?)
IV = Vl|.2(t = 0) = O(Fr) IV — V¥l 2(t > 0) = O(Fr)

Mathieu Rigal A low Froude accurate scheme 28/36



Preserving nearly-incompressible states

State of the art

Lin. K,G around (-z, V*): KU =(V*-V)U, GU=(-zV-V, Fr2vh)T

Define  Eg(t) = Fr2|ihl2, - zIVI2,, Eg:(t) = Fr2lh = hi2, — ||V - VI&,

Theorem 2 (Dellacherie)

Let U and U* be respective solutions of

U+ KU+GU=0 U+ KU =0
u(t=0,-) = U U(t=0,-) = PsU°()

Then PgU = U*, and E; = E;, = 0. As a consequence

IV = Vli2(t = 0) = O(Fr) IV = V¥ll2(t > 0) = O(Fr)

{ lIh = hll 2(t = 0) = O(Fr?) . { llh = h*[l.2(t > 0) = O(Fr?)
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Preserving nearly-incompressible states
State of the art

Theorem 3 (Dellacherie)

Let ¥ be a lin. differential operator, and let U and U* be resp. solutions of

BtU+7’U=0 6tU*+¢U*=0
u(t=0,) = U U'(t=0,-) = PsU°()

The following holds:

@ ||U° — PgUO|,2 = O(Fr) = ||U — U*|| 2(t = 0) = O(Fr). Since & is not
invariant, in general U* ¢ & and thus U* # PgU.

© Assume ¥ is such that (0; + F)U = 0 leaves & invariant. Then we can
substitute U* with PgU in the point above.

v

— Inthe linear case, &-invariance is sufficient to preserve nearly
incompressible states

Mathieu Rigal A low Froude accurate scheme 30/36



Preserving nearly-incompressible states
Low Froude accuracy

Definition 3 (Modified PDE)

The p™" order modified PDE associated to a scheme is an equation whose
solutions are approximated by that scheme up to O(AtP+?) terms.

v

Definition 4 (Low Froude accuracy)

Let H + L be a wave splitting for (Pg), such that H has bounded
eigenvalues when Fr — 0. A numerical scheme is low Froude accurate
(LFA) for the splitting (H, L) if it admits an &-invariant modified PDE when
applied to the linearized acoustic wave equation with flat bathymetry:

0tU + Liinearized(U) = 0.

v

Arun and Samantaray 2020 “Asymptotic Preserving Low Mach Number Accurate IMEX
Finite Volume Schemes for the Isentropic Euler Equations”
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Preserving nearly-incompressible states

Low Froude accuracy

Proposition 2
Scheme P!

At Fr is not low Froude accurate.

Proof. Write the modified PDE associated to P!

ALFr when H; =0, Vz=0:

(0t + L)U = [Rat — Rax]U (8)

@ Leading error induced by s-stages RK method (A, b) of order p:
1
(p+1)!
@ Leading error induced by spatial centered differences of order p:

Rax = vp(AXPLL 2™ + AyPLA 307") with L, = DF((~2,0)" ;n)

Rar = At”(bTAp1s - )(—L)P+1 — forPhp §=3, p=2

We have W = ker L C ker Rat, but W ¢ ker Ray m]
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Preserving nearly-incompressible states
Low Froude accuracy

We would like to replace the error operator Rax with
Rax = vp(AxPO5 + AyPO))L = W c ker Rax

We will need to discretized operator (ﬁAX — Ray):

— p 9P+ p —5P+1 z
Rax — Rax = VP(Ay b ayeax T axeay )( - [O]) ©

For p = 2, define W = U + (z,0)" and Rj; a centered discretization of (9):

i+1 Lny

AUU) = 2 (o [ Wopr = 2+ W]+ 2 Wi, = 2 s Wi )

Proposition 3

Define Pim by substituting Lj with L + Rjj in PLLFF. This new scheme
inherits from all the good properties of SD1ALFr, in addition of being LFA.
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A first IMEX scheme

Wave splitting and discretization

Solution at time t = Fr/6 with Fr = 10~" (above: reference, below: SDN )

[ - L | ‘
. " ' 2 R
2.41e-03 8.00e-02 3.00e+00
| | |
’ . ‘ 8.00e-04 ‘ 5.33e-02 1.66e+00
‘ . -8.12e-04 2.67e-02 ' ‘ ' 3.32e-01
. ‘ ‘ I72.42e703 ‘ Is.meros | 00e+00
Free surface Local Froude number X-discharge

2.43e-03

' . ' 8.07e-04 ‘
. » -
I72.4 5-03

Free surface Local Froude number X-discharge

I | I ‘ l7 98e-02 I . . l2 99e+00

5.35¢-02 1.66€+00

271e-02 ' . ‘ 3.34e-01
‘ Ia.zzerm

9 94e-01
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A first IMEX scheme

Wave splitting and discretization

Gresho vortex (steady state) at time t = 1/2 with Fr = 1072

7.73e-05 2.39€+00

6.15¢-03 - I

5.16-05 4.10e-03 7.97e-01
2.60e-05 2.05e-03 7.97e-01
Iause-o? Iuvuoe»,uo I-asse‘ou

Free surface Local Froude number X-discharge

7.85¢-05 2.392+00

6.12e-03 -

5.23e-05 4.08e-03 7.96e-01
2.61e-05 2.04e-03 -7.96-01
I,| 77e07 I2.549709 I'2.39€100

Free surface Local Froude number X-discharge
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Conclusion: accuracy at Fr < 1 requires linear E-invariance
@ second order modified scheme shows great improvement;
@ procedure can be extended to higher order;

Limitations:
@ high complexity due to system inversion;

@ oscillations can appear in non smooth regions (MOOD procedure?);
@ lack of positivity;

Ongoing work: implicit upwind kinetic scheme
@ positivity and discrete entropy inequality;
@ linear system can be inverted manually...
@ ... but O(N?) complexity;
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Appendix
The classical Finite Volumes method

Finite Volumes well suited for hyperbolic systems of conservation laws:

%w F(U)=0, UeRP, F(U)eRP (10)

Integrate over control volume [0, 5t] x Q with Q c RY:
ot
[ vetoxn - voxpaay =~ [ [ Fxyina draer
Q 0Q JO

(U>Q(5t) —(U)q(0)
St T

f (F(U; noa)posq(x. y) dor (11)

— Need to approximate the flux at the boundary

Mathieu Rigal A low Froude accurate scheme 37/36



Appendix

The classical Finite Volumes method

Consider piecewise-constant data and project along the normal

Q, We get the 1D Riemann problem:

Qr

= W +9sF(W;n) =0
wo = 1s<0UL +1s50UR

Self-similar solution W : (t,s) — W(s/t; UL, UR)

S1 Sa Rs3
K T
st P
7/ e
/e
7/
.
// //
///
/:/ UR
A
0
QL s = QR s
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Appendix

The classical Finite Volumes method

Hence we have (F(U; n))o.s ~ F(W(0; U, Ur); n)
Expensive to determine W — use approximate Riemann solvers

Example: Rusanov flux
]
Frus(UL, UR) = E(F(UL) + F(Ur) — lal(Ug — UL))

Stability: no crossing wave (avoid collisions)
= CFL condition on the time step

Ax

At < —
2|a|
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Appendix
The classical Finite Volumes method

Second order accuracy: piecwise linear reconstruction

@ Edge K with neighboring cells K|L and K|R;
@ Edge normal nk « center(K|R) — center(K]|L);

Reconstruction: MUSCL + minmod limiter:

%,U = (Uf+1,j - Ui—1,j, Uijs1 = Uij-1 )’ el = ,UKlR - Uk
5AX 27y dist(KIL, KIR)

Uk- = Uk + dist(K|L, K) X minmod(?;qLU- nk, oxU)

Uk, = Ukir — dist(K, KIR) x minmod(ﬁK“qU - Nk, ok U)
1
where  minmod(a, b) = E(sign(a) + sign(b)) min(|al, |b|)
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